Abstract

Sarcopenia, the age-related loss of muscle mass and strength, contributes to frailty, functional decline, and reduced quality of life in older adults. Exercise is a recognized therapy for sarcopenia and muscle dysfunction, though not a cure. Muscle power declines at an increased rate compared to force, and force output declines earlier than mass. Thus, there is a need forresearch of exercise focusing on improving power output and functionality in older adults. Our primary purpose was proof-of-concept that a novel individualized power exercise modality would induce positive adaptations in adult mice, before the exercise program was applied to an aged cohort. We hypothesized that after following our protocol, both adult and older mice would show improved function, though there would be evidence of anabolic resistance in the older mice. Male C57BL/6 mice (12months of age at study conclusion) were randomized into control (n = 9) and exercise (n = 6) groups. The trained group used progressive resistance (with a weighted harness) and intensity (~ 4-10rpm) on a custom motorized running wheel. The mice trained similarly to a human workout regimen (4-5 sets/session, 3 sessions/week, for 12weeks). We determined significant (p < 0.05) positive adaptations post-intervention, including: neuromuscular function (rotarod), strength/endurance (inverted cling grip test), training physiology (force/power output per session), muscle size (soleus mass), and power/velocity of contraction (in vitro physiology). Secondly, we trained a cohort of older male mice (28months old at conclusion): control (n = 12) and exercised (n = 8). While the older exercised mice did preserve function and gain benefits, they also demonstrated evidence of anabolic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.