Abstract

In this study, hyperbranched polyamidoamine (hPAMAM) was developed as a novel non-viral gene vector for the first time. The hPAMAM was synthesized using a modified “one-pot” method. DNA was then bound to hPAMAM at different weight ratios (whPAMAM/wDNA). The higher weight ratio could bring larger particle size and higher zeta potential of hPAMAM–DNA complexes. The encapsulated DNA was protected by hPAMAM from degradation for over 3h. Under the optimal condition, high gene transfection efficiency could be achieved in COS7 (47.47±1.42%) and HEK293 (40.8±0.98%) cell lines. And hPAMAM showed rather minor cytotoxicity in vitro (cell viability=91.38±0.46% in COS7 and 92.38±0.61% in HEK293). The hPAMAM mediated human vascular endothelial growth factor 165 (hVEGF165) gene transfected cells could express hVEGF165 stably for 14 days, with the peak expression at day 2. In conclusion, hPAMAM based gene delivery was economical, effective and biocompatible, and may serve as a promising non-viral vehicle for gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.