Abstract

Zika virus (ZIKV) is an Aedes mosquitoes-transmitted flavivirus, and its infection may cause severe neurological diseases. A genetically stable infectious clone is essential for ZIKV research, however the toxicity and instability of the viral cDNA in bacteria potentially due to its bacterial promoter activity are major challenges. Here, we constructed a full-length cDNA clone for isolate ZG01 by introducing non-coding changes T1865C/A1868G to reduce the bacterial promoter activity. Wild-type and recombinant ZG01 were highly attenuated in Vero cells, thus we serially passaged wild-type ZG01 through neonatal mice and Vero cells to generate high-titer virus, from which four mutations (4m, C2178T/G2913A/T4991C/T10561C) were identified. Addition of 4m greatly enhanced the infectivity, as ZG01_4m released ZIKV of 107.0–107.5 plaque-forming unit (PFU)/ml in infected Vero and A549 cells. ZG01_4m resembled the infectivity of high-titer ZG01 in vitro and in vivo. Notably, ZG01_4m plasmid was genetically stable after multiple rounds of transformation-purification in bacteria. Using ZG01_4m, we identified a potential RNA-RNA interaction between 5′UTR and 3′UTR and demonstrated that the nucleotides involved were essential for ZIKV production. The genetically stable ZG01 cDNA clone provides a reliable tool for the study of this important virus, and the strategy used here is feasible for the development of reverse genetics systems for other ZIKV isolates and related flaviviruses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.