Abstract
Dyes are recalcitrait organic pollutants threatening the aquatic environment and human health. In the present study, a novel low-cost hybrid membrane was fabricated by coating polyurethane foam (PUF) with polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) via phase inversion technique from casting solutions consisting of PAN and PVP with Dimethyl formamide (DMF) and applied for removal of cationic (Methylene Blue (MB)) and anionic (Methyl Orange (MO)) dyes from aqueous solutions. The as-prepared membrane was first characterized by Scan Electron Microscope (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive Spectrometry (EDS), etc. Then, batch experiments were conducted to optimize the adsorption conditions, including contact time, adsorbent dose, dyes concentration, and pH. The dye removal results fitted with pseudo first and second-order kinetics; Langmuir, Freundlich, and Temkin isotherms' models. The maximum dye decolorization was approximately 97% and 95% within 60 and 120 min using 0.5 and 1 g of the fabricated composite for MB and MO, respectively. The kinetic studies showed rapid sorption dynamics following a second-order kinetic model. In addition, dye adsorption equilibrium data fitted well to the Freundlich isotherm with monolayer maximum adsorption capacity of 6.356 and 3.321 mg/g for MO and MB dye, respectively. Thus, the novel hybrid membrane is promising as a cheap and efficient adsorbent for the removal of both cationic and anionic dyes from wastewater. The current study demonstrated a new avenue to achieve efficient management of dyes in aquatic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.