Abstract

We addressed electrochemical behaviors of caffeine at the modified sensor (three dimensional NiO nanowrinkles modified glassy carbon electrode (3D NiO NWs/GCE)) in an aqueous medium with cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The modification of sensor was performed by drop-casting process. Electrochemical investigations showed that the fabricated 3D NiO NWs/GCE sensor exhibited excellent catalytic performance for the oxidation of caffeine. Based on the optimal conditions of pH=7.0 in CV, caffeine oxidation happens at a potential ~200 mV less positive than that of the unmodified GCE. The current response of 3D NiO NWs/GCE sensors presents a remarkable sensitivity based on CV. The calibration plot is linear (R2: 0.9991) over the concentrations ranging between 0.1 and 800.0 μM of caffeine. Limit of detection (LOD) was 0.03 μM for caffeine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.