Abstract
When a new event occurs, the nodes in the neighborhood of the event sense and then send many packets to the sink node. Such circumstances need their networks to be simultaneously reliable and event-driven. Moreover, it should be remove redundant packets in order to lower the average energy consumption. A data fusion algorithm based on event-driven and Dempster–Shafer evidence theory is proposed in this paper to reduce data packet quantities and reserve energy for wireless sensor networks upon detecting abnormal data. Sampling data is compared against the set threshold, and the nodes enter the relevant state only when there are abnormal datum; at this point, cluster formation begins. All cluster members incorporate a local forwarding history to decide whether to forward or to drop recent sampling data. Dempster–Shafer evidence theory is exploited to process the data. The basic belief assignment function, with which the output of each cluster member is characterized as a weighted-evidence, is constructed. Then, the synthetic rule is subsequently applied to each cluster head to fuse the evidences gathered from cluster member nodes to obtain the final fusion result. Simulation results demonstrate that the proposed algorithm can effectively ensure fusion result accuracy while saving energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.