Abstract
Insulation fault diagnosis is essential because faulty insulation will lead to the interruption of power delivery. Partial discharge (PD) pattern classification is widely used in insulation diagnosis to identify incipient fault before catastrophic failure occurs. PD classification systems improved significantly due to the emergence of advanced machine learning techniques such as deep learning algorithms. However, classification systems trained in ideal noise-free condition suffer severe performance degradation when tested on-site where the condition is nonideal due to the presence of noise contamination. In this work, a novel data augmentation technique was implemented where simulated noise was added to create augmented data. The augmented data was used in tandem with ideal condition PD data during the training phase of four well known convolutional neural networks (CNN). For a realistic performance evaluation, the classification system was trained with ideal noise-free data and augmented data but tested with data overlapped with actual measured noise representing nonideal condition via K-fold cross-validation. The results showed that the proposed data augmentation technique improved the performance of CNN under nonideal condition by 15.83%–29.05% without compromising its performance under ideal condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.