Abstract

Existing methods for withdrawal reflex detection from surface electromyography (sEMG) do not consider the potential presence of electrical crosstalk, which in practical applications may entail reduced detection accuracy. This study estimated muscle fiber conduction velocities (CV) for the tibialis anterior (TA) and soleus (SOL) muscles of both genuine reflexes and identified crosstalk, measured during antagonistic reflex responses. These estimations were used to develop and assess a novel method for reflex detection resistant to crosstalk. Cross correlations of two single differential (SD) sEMG signals recorded along the muscle fibers were performed and two features were extracted from the resulting correlograms (average CV and maximal cross correlation). Reflex detection based on evaluation of the extracted features was compared to a conventional reflex detection method (thresholding of interval peak z-scores), applied on both SD and double differential (DD) sEMG. Intramuscular electromyography (iEMG) was used as validation for reflex detection. Apparent CV due to electrical crosstalk alone were more than one order of magnitude higher than CV estimated for genuine reflexes. Conventional reflex detection showed excellent sensitivity but poor specificity (0.19-0.76) due to the presence of crosstalk. In contrast, cross correlation analysis allowed reflex detection with significantly improved specificity (0.91-0.97). The developed methodology may be readily implemented for more reliable reflex detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.