Abstract

Polyhydrazides (PHs) and polyoxadiazoles (PODs) have broad potential applications, but PHs are generally not high-temperature resistant and PODs are commonly insoluble in organic solvents, degrade before melting, and do not show glass-transition temperature (Tg). These limitations make their processing quite difficult. To overcome these shortcomings, novel copolyhydrazides (CPHs) and copolyoxadiazoles (CPODs) based on 1,4-phenyl linkage and 1,3,4-thiadiazole moiety in the main chain have been synthesized. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed to assess the polymers thermal behavior. Also, the crystalline structure and surface morphology were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, their solubility, viscosity, UV-visible absorption, antimicrobial characteristics were studied. Most of the new CPHs and CPODs showed high thermal stability and good solubility in polar aprotic solvents. Moreover, the CPODs melted and showed Tg and fortunately their Tg values are still high (>227 °C), so they are suitable for use under extreme conditions. It seems that incorporating 1,4-phenyl linkage and 1,3,4-thiadiazole moiety into the polymer main chain enhanced the solubility and suppressed the crystallinity, while kept the thermal stability. Furthermore, the CPODs gave large antibacterial and antifungal activities, confirming the possibility to be used in medicinal fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.