Abstract

As the lightest structural metal, magnesium alloys have been attractive to reduce vehicle weight and emissions by lightweight design in the automotive industry. Structural crashworthiness is not a physical property itself, but correlates with the material’s ductility and structural design. Magnesium is known to be a material with lower failure strain than other metallic materials. Therefore the use of magnesium in crash-related areas is more challenging compared to steel and aluminum.In structures with a bending load, as in the case of a bumper or the sill, crash properties can be significant improved by filling profiles with a stabilizing core. In order to evaluate the crashworthiness of this hybrid structure under bending loads, both empty and polyurethane foam-filled rectangular section beams were constructed and tested by using the quasi-static/dynamic three-point bending facilities at German Aerospace Centre (DLR) – Institute of Vehicle Concepts.For structures with axial crash loads the normal buckling mode will lead to a very early fracture of the magnesium part. In collaboration with researchers from the University of Windsor and the University of Waterloo, novel technologies for energy absorption which are based on cutting or peeling mechanisms have been developed and investigated, which allow the use of magnesium in these challenging applications. Results of the joint research will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.