Abstract
A time-of-flight (TOF) neutron spectrometer is a candidate for the measurement of the D/T burning ratio in the International Thermonuclear Experimental Reactor (ITER). In ITER high-power experiments, the TOF system suffers from a high event rate or accidental counts due to high radiation intensities, which is one of several background sources in DD neutron measurement. We herein propose a new neutron spectrometer to apply to the measurement of the D/T burning ratio in the ITER high-power operation region. This system is based on the conventional double-crystal TOF method and consists of a water cell and several pairs of scintillators. A water cell is inserted before the first scintillator of the TOF system and acts as a radiator or neutron scattering material. Because DD neutrons have a larger cross section of elastic scattering with hydrogen than DT neutrons, the elastic scattering in the radiator enhances the relative ratio of DD/DT intensity by approximately three times before entering the TOF system. The enhancement of the relative intensity of DD neutrons makes the detection of DD neutrons easier. The feasibility of this method as a neutron spectrometer has been verified through a preliminary experiment using a DT neutron beam (20mm ϕ) at the Fusion Neutronics Source, Japan Atomic Energy Agency. The present article describes the basic performance of the prototype system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.