Abstract

ABSTRACTFlax and Jute fabrics were used as reinforcements with polyester resin to form composite skins while poplar particleboard was used as a core for making composite sandwich structures by applying vacuum assisted resin transfer molding (VARTM) technique. Mechanical, physical, and biological properties of these novel composite sandwich structures were evaluated. The results showed that the proposed engineered panels have superior mechanical properties that are suitable for different structural applications compared with conventional particleboards. When compared with the control panels, significant enhancement on Modulus of elasticity (MOE) and Modulus of rupture (MOR) were achieved. On the other hand, the results indicated that the proposed panel composites exhibit better dimensional stability compared with poplar particleboard control panels. In addition, the proposed composite sandwich structures proved resistant against the decay fungi after 12 weeks of fungal exposure. Obviously, the developed composite panels could be used in a wide variety of applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42253.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.