Abstract
The interfacial structure between front-side silver electrodes and n-type silicon emitters plays a very crucial role for the electrical and mechanical properties of silicon solar cells. Studies show that the residual glass layers at the Ag/Si interfaces will significantly increase the contact resistance, and this subsequently leads to a decrease in the overall efficiency of the silicon solar cells. In this work, silver-coated nano-sized non-glass frits using an electroless plating method were employed to improve the interfacial conductivity. Transfer length method was applied to evaluate the electrical performance of the samples made with different ceramic additives. For samples made with nano-sized silver-coated ceramic additives, the improvement of conductivity was found to be about 22% compared to additives with the same compositions with no surface treatment. The results indicate that the silver layer on the surface of ceramic additives provides a conducting channel within the residual insulating layer and therefore reduces overall electrical resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.