Abstract

The adoptive transfer of human T cells or genetically-engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. The objective of this study was to develop a novel T cell biomanufacturing platform using stirred-tank bioreactor for large-scale and high-quality cellular production. First, various factors, such as bioreactor parameters, media, supplements, stimulation, seed age, and donors, were investigated. A serum-free fed-batch bioproduction process was developed to achieve 1000-fold expansion within 8 days after first stimulation and another 500-fold expansion with second stimulation. Second, this biomanufacturing process was successfully scaled up in bioreactor with dilution factor of 10, and the robustness and reproducibility of the process was confirmed by the inclusion of different donors’ T cells of various qualities. Finally, T cell quality was monitored using 12 surface markers and 3 intracellular cytokines as the critical quality assessment criteria in early, middle and late stages of cell production. In this study, a new biomanufacturing platform was created to produce reliable, reproducible, high-quality, and large-quantity (i.e. > 5 billion) human T cells in stirred-tank bioreactor. This platform is compatible with the production systems of monoclonal antibodies, vaccines, and other therapeutic cells, which provides not only the proof-of-concept but also the ready-to-use new approach of T cell expansion for clinical immune therapy.

Highlights

  • Human T cell immunotherapies require high-quality and high-capacity cellular biomanufacturing

  • Compared to WAVE bag, the stirred-tank bioreactor has the advantages of efficient mass transfer of oxygen and nutrients, high robustness of bioproduction, and outstanding scalability due to the precise process control of pH, temperature, dissolved oxygen (DO), agitation, gas sparging, and

  • The purified T cells were stimulated with anti-CD3 and anti-CD28 mAbs for four days to prepare the seed culture for processing in the stirred-tank bioreactor

Read more

Summary

Introduction

Human T cell immunotherapies require high-quality and high-capacity cellular biomanufacturing. The reported WAVE system generated 100–700 folds of T cell expansion from a 18-day perfusion culture [8,9,10], and the G-Rex system achieved up to 135-fold cell expansion from a 23-day batch culture [11]. Despite these technological advancements, the current T cell biomanufacturing process presents. An advanced cellular biomanufacturing platform using stirred-tank bioreactor to produce high-quality and large-scale human T cells could overcome these technical challenges. The stirred tank has been used to produce antibodies [12], biochemicals [13], viruses, hiPSCs, hiPSC-derived cardiomyocytes, and other biologics in our lab, which consistently shows very solid and robust bioproduction capability

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.