Abstract
This quarterly report describes our recent work on two related subjects: effect of using organometallic catalyst precursor on hydrodeoxygenation under coal liquefaction conditions, and the effect of mineral matters in liquefaction reactions of coals. Oxygen functionalities, especially phenols, are undesirable components of coal derived liquids. Removal of these compounds from the products of coal liquefaction is required. A beneficial alternative would be the removal of these functionalities, or the prevention of their formation, during the liquefaction process. Organometallic precursors of Co, Ni and Mo have been studied as catalysts. To ascertain the hydrodeoxygenation properties of these catalysts under liquefaction conditions, model compounds were investigated. Anthrone, Dibutylmethyl phenol, dinaphthyl ether and xanthene were studied to provide a comparison of conversions to deoxygenated products. Studies of the deoxygenating abilities of these catalyst precursors in coal liquefaction systems have also been performed. Improvements in conversion and product quality are observed. Both these factors are dependent on the coal used. It is also considered that some mineral matters in coal may have catalytic actions. Demineralization by successive HCl/HF treatments of a low rank coal has demonstrated that removal of the inherent mineral matter imparts no serious detrimental effect upon low temperature liquefaction. It appears that elimination of such species allows for better access for gaseous H{sub 2}, as suggested by previous studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.