Abstract

In this paper, we report on our effort to design a novel lithium salt derived from bis(trifluoroborane)benzimidazolide by using density functional theory (DFT) calculations. The effects of different substituents are investigated with respect to ion pair dissociation energies and intrinsic anion oxidation potential of the molecules. Based on our calculations, we have found that ion pair dissociation energies and intrinsic anion oxidation potentials of the anions are mainly affected by the position and the type of substituents introduced into the parent structure. Compared to -CH3, substitution at the C2 position of the parent bis(trifluoroborane)benzimidazole (BTB(-)) by -CF3 results in an increase in anion oxidation stability. However, we observed a negligible change in the intrinsic anion oxidation potential as the length of the fluoroalkyl group increased to -C2F5. The most promising anions are generated by considering double-substitution at C2 and C5 positions. Among the possible anions, bis(trifluoroborane)-5-nitro-2-(trifluoromethyl) benzimidazolide (BTNTB(-)), with the calculated intrinsic anion oxidation potential of 5.50 V vs. Li(+)/Li, can be considered as a potential candidate for high voltage Li-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.