Abstract

Type 2 diabetes is a leading cause of morbidity and mortality. While genetic variants have been found to influence the risk of type 2 diabetes mellitus, relatively few studies have focused on genes associated with glycated hemoglobin, an index of the mean blood glucose concentration of the preceding 8–12 weeks. Epidemiologic studies and randomized clinical trials have documented the relationship between glycated hemoglobin levels and the development of long-term complications in diabetes; moreover, higher glycated hemoglobin levels in the subdiabetic range have been shown to predict type 2 diabetes risk and cardiovascular disease. To examine the common genetic determinants of glycated hemoglobin levels, we performed a genome-wide association study that evaluated 337,343 SNPs in 14,618 apparently healthy Caucasian women. The results show that glycated hemoglobin levels are associated with genetic variation at the GCK (rs730497; P = 2.8×10−12), SLC30A8 (rs13266634; P = 9.8×10−8), G6PC2 (rs1402837; P = 6.8×10−10), and HK1 (rs7072268; P = 6.4×10−9) loci. While associations at the GCK, SLC30A8, and G6PC2 loci are confirmatory, the findings at HK1 are novel. We were able to replicate this novel association in an independent validation sample of 455 additional non-diabetic men and women. HK1 encodes the enzyme hexokinase, the first step in glycolysis and a likely candidate for the control of glucose metabolism. This observed genetic association between glycated hemoglobin levels and HK1 polymorphisms paves the way for further studies of the role of HK1 in hemoglobin glycation, glucose metabolism, and diabetes.

Highlights

  • IntroductionWhile genetic variants influence the risk of type 2 diabetes mellitus [1], relatively little is known about the role of genetic variations in the regulation of glucose concentration in healthy individuals

  • Type 2 diabetes is a leading cause of morbidity and mortality

  • While genetic variants influence the risk of type 2 diabetes mellitus [1], relatively little is known about the role of genetic variations in the regulation of glucose concentration in healthy individuals

Read more

Summary

Introduction

While genetic variants influence the risk of type 2 diabetes mellitus [1], relatively little is known about the role of genetic variations in the regulation of glucose concentration in healthy individuals. Only two genes, glucokinase (GCK) [2,3,4] and G6PC2 [5,6], have been unequivocally associated with fasting blood glucose concentration in healthy subjects. Other genes, such as SLC30A8, have been linked to glucose metabolism without ever having been associated with blood glucose concentration per se [7]. Clinical trials have documented the relationship between glycated hemoglobin levels and the development of long-term complications in type 1 and type 2 diabetes [12,13], and higher glycated hemoglobin levels in the subdiabetic range have been shown to predict type 2 diabetes risk [14] and cardiovascular disease [14,15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.