Abstract

We have created a new architecture for the detection and location of specific buried targets. The system uses a combination of acoustic vibrations and electromagnetic waves to achieve highly specific target recognition, and a multistatic configuration to determine target location. The mechanical vibration resonance properties of the constituent elements of the targets constitute a signature which can be identified in clutter. In order to better detect these vibrations, continuous-wave radar signals are used rather than acoustic reflections, as in sonar-based systems. The energy stored in resonant vibrating elements is not directly detected, but rather modulates the radar signal. The received signals are sampled at high resolution to facilitate target signature recognition by cross-correlation and phase measurement. Location is accomplished by travel time determination for each receiver using absolute phase measurements at multiple frequencies. The phase measurements provide multiple sets of confocal elliptical lines of position, whose intersection identifies the target location. The region in which a mine can be precisely located is a subset of the region in which its presence can be detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.