Abstract
Abstract This study presents the development of a computational fluid dynamics model for predicting ultra‐low temperatures (less than −100°C). The frost formation rate was characterized using dimensionless numbers derived from operating conditions. To better capture the underlying physical phenomena of ultra‐low temperature frosting, various physical parameters were introduced and systematically adjusted. Additionally, an ice deposition model—often overlooked in existing studies—was incorporated to enhance the model's accuracy. The influence of each parameter on predicted frost thickness was analyzed, and the simulation results were validated against experimental data. Using the established model, the impact of operating conditions on frost growth was investigated. The predicted trends in frost growth under varying conditions showed strong agreement with experimental observations. This model lays the foundation for simulating ultra‐low frost formation in more complex geometries at different operating conditions.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have