Abstract
Acetylcholinesterase and butyrylcholinesterase (BChE) typically hydrolyze the neurotransmitter acetylcholine. The multifunctional enzyme BChE is associated with lipid metabolism through an undefined mechanism. Based on lipid-related studies and by comparing the structural similarities between lipases and BChE we postulated that the association of BChE with lipid metabolism could occur through hydrolytic activity. Utilizing purified BChE enzymes from different sources and several lipases as controls, the ability of BChE to hydrolyze 4-methylumbelliferyl (4-mu) palmitate is investigated. Using lectin affinity, inhibition kinetics, and molecular modeling, we demonstrated that purified BChE hydrolyzed 4-mu palmitate at pH 8 as effectively as wheat germ lipase. The affinity Km value of the enzymes for 4-mu palmitate as substrate is found as 10.4 μM, 34.2 μM, 129.8 μM, and 186 μM for wheat germ lipase, purified BChE, pancreatic lipase, and commercial BChE, respectively. Analysis of the inhibitory effect of 4-mu palmitate on BChE using butyrylthiocholine as substrate revealed competitive inhibition with Ki and IC50 values of 448 μM and 987.2 μM, respectively. The binding affinity and interactions of 4-mu palmitate with BChE and pancreatic lipase were predicted by molecular docking. These results suggest that BChE possesses lipolytic activity. The possibility that BChE hydrolyzes not only 4-mu palmitate but also other types of lipids will lead to a new approach to those disease states associated with increased BChE activity/expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.