Abstract

AbstractGain-of-function somatic mutations introducing cysteines to either the extracellular or to the transmembrane domain (TMD) in interleukin-7 receptor α (IL7R) or cytokine receptor-like factor 2 (CRLF2) have been described in acute lymphoblastic leukemias. Here we report noncysteine in-frame mutations in IL7R and CRLF2 located in a region of the TMD closer to the cytosolic domain. Biochemical and functional assays showed that these are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells in vitro and are transforming in vivo. Protein fragment complementation assays suggest that despite the absence of cysteines, the mechanism of activation is through ligand-independent dimerization. Mutagenesis experiments and ConSurf calculations suggest that the mutations stabilize the homodimeric conformation, positioning the cytosolic kinases in predefined orientation to each other, thereby inducing spontaneous receptor activation independently of external signals. Hence, type I cytokine receptors may be activated in leukemia through 2 types of transmembrane somatic dimerizing mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.