Abstract

A series of novel 3-aminothiazolquinolones as analogues of quinolone antibacterial agents were designed and synthesized in an effort to circumvent quinolone resistance. Among these 3-aminothiazolquinolones, 3-(2-aminothiazol-4-yl)-7-chloro-6-(pyrrolidin-1-yl) quinolone 12b exhibited potent antibacterial activity, low cytotoxicity to hepatocyte cells, strong inhibitory potency to DNA gyrase, and a broad antimicrobial spectrum including against multidrug-resistant strains. This active molecule 12b also induced bacterial resistance more slowly than norfloxacin. Analysis of structure-activity relationships (SARs) disclosed that the 2-aminothiazole fragment at the 3-position of quinolone plays an important role in exerting antibacterial activity. Molecular modeling and experimental investigation of aminothiazolquinolone 12b with DNA from a sensitive methicillin-resistant Staphylococcus aureus (MRSA) strain revealed that the possible antibacterial mechanism might be related to the formation of a compound 12b-Cu(2+)-DNA ternary complex in which the Cu(2+) ion acts as a bridge between the backbone of 3-aminothiazolquinolone and the phosphate group of the nucleic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.