Abstract
This work presents a simplified mathematical model for fast visualization and thermal simulation of complex and integrated energy systems that is capable of providing quick responses during system design. The tool allows for the determination of the resulting whole system temperature and relative humidity distribution. For that, the simplified physical model combines principles of classical thermodynamics and heat transfer, resulting in a system of three-dimensional (3D) differential equations that are discretized in space using a 3D cell-centered finite volume scheme. As an example of a complex and integrated system analysis, 3D simulations are performed in order to determine the temperature and relative humidity distributions inside an all-electric ship for a baseline medium voltage direct current power system architecture, under different operating conditions. A relatively coarse mesh was used (9410 volume elements) to obtain converged results for a large computational domain (185m×24m×34m) containing diverse equipment. The largest computational time required for obtaining results was 560 s, that is, less than 10 min. Therefore, after experimental validation for a particular system, it is reasonable to state that the model could be used as an efficient tool for complex and integrated systems thermal design, control and optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.