Complex networks are difficult to understand and deal with, yet building a graph of any complex and huge structure, whether chemical or computer-related, is quite straightforward. In the form of a graph theory view, it becomes simple to design networks. Each component's recognition is aided by the ease of its production in the form of graph theory. Finding a vertex (node or atom) in a structure is similarly difficult; in this instance, resolvability parameters come into play. This technique plays a significant role in managing or allowing access to each vertex in relation to some chosen vertices called a resolving set that shapes an entire cluster of vertices into a unique form and every single vertex is easy to recognise or locate, whether the small or large the structure. This article contributes the bounds on the parameter of partition dimension of chemical complexes in dialkyltin of supramolecular chain from N-Salicylidene-L-Valine. We supposed the complexes of chains from 2,3,4 and another chemical network, and we demonstrated that the number of vertices has a significant impact on the composition of resolving partition sets.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call