Abstract

AbstractInternal wave energy in the Arctic Ocean is often an order of magnitude lower than the midlatitudes. By inhibiting energy input and causing damping, the presence of sea ice is believed to be responsible for low internal wave energy. While a few current studies have shown slightly elevated internal wave energy compared to historical measurements, it has not matched the catastrophic decline in sea ice extent over the same period. We report internal wave energy and mixing estimates that show little difference in the presence of sea ice. To examine possible causes other than sea ice, we adopt the model framework developed in Gill (1984) to explore the importance of previously unexamined factors responsible for the low internal wave energy in the Arctic Ocean. Model results show that low β and shallow mixed layers can result in significant reductions in horizontal kinetic energy in the pycnocline compared to midlatitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.