Abstract
Nitric oxide (NO), an important chemical messenger, serves a dual role in tumor progression. Nitric oxide synthase isoform 1 (NOS1) was observed to be increasingly expressed in various types of cancer, and its expression has been associated with tumor progression. However, the level of NOS1 expression and the associated functions of NOS1 in human ovarian cancer remain undefined. Using gene expression profiles of ovarian cancer from the Gene Expression Omnibus (GEO) database, the present study revealed that NOS1 was increasingly expressed in ovarian cancer tissues. The present study investigated the level of NOS1 expression and its effects on in vitro cell function, including proliferation, migration and invasion as well as chemoresistance to cispatin (DDP) treatment in OVCAR3 cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that the level of NOS1 mRNA expression varied in different ovarian cancer lines. However, immunoblotting indicated that the level of NOS1 protein expression was constitutively high in ovarian cancer cell lines. Treatment with NOS inhibitor NG-nitro-L-arginine methyl ester or transfection with NOS1 short hairpin RNA significantly inhibited cell proliferation, migration and invasion compared with the control, whereas the sensitivity of OVCAR3 cells to DDP treatment was increased. The results of the present study indicated that NOS1 promoted the function of ovarian cancer cells, including proliferation, invasion and chemoresistance, providing a potential target for ovarian cancer therapeutic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.