Abstract
Utilizing the Birkhoff--James orthogonality, we present some characterizations of the norm-parallelism for elements of $\mathbb{B}(\mathscr{H})$ defined on a finite dimensional Hilbert space, elements of a Hilbert $C^*$-module over the $C^*$-algebra of compact operators and elements of an arbitrary $C^*$-algebra. We also consider the characterization of norm parallelism problem for operators on a finite dimensional Hilbert space when the operator norm is replaced by the Schatten $p$-norm. Some applications and generalizations are discussed for certain elements of a Hilbert $C^*$-module.
Full Text
Topics from this Paper
Finite Dimensional Hilbert Space
James Orthogonality
Algebra Of Compact Operators
Finite Dimensional Space
Operator Norm
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Quantum Studies: Mathematics and Foundations
Jan 23, 2016
arXiv: Category Theory
Jul 30, 2012
Annals of Physics
Nov 1, 2015
Bulletin of the Iranian Mathematical Society
Oct 1, 2020
Pure and Applied Mathematics Journal
May 12, 2015
arXiv: Optimization and Control
Dec 12, 2014
Logical Methods in Computer Science
Aug 10, 2012
Nonlinear Analysis
Sep 1, 2017
arXiv: Operator Algebras
Apr 15, 2014
arXiv: Quantum Physics
Feb 10, 2010
Quantum Information and Computation
Sep 1, 2022
arXiv: Functional Analysis
Jul 26, 2010
arXiv: Quantum Physics
May 24, 2002
arXiv: Quantum Physics
Sep 27, 2001
Indagationes Mathematicae
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Nov 1, 2023
Indagationes Mathematicae
Oct 1, 2023