Abstract

The nature of attractive particulate networks, yield stresses, and normal stress differences is systematically reviewed, each in terms of the relevant definitions, underlying mechanisms, and current measurement techniques. With this foundation, experimental observations of normal stress differences in some suspensions and colloidal systems are surveyed, along with constitutive models that allow for normal stress differences to arise prior to yielding. Yield stresses are a hallmark of attractive colloidal systems and vital in their processing. In contrast, little attention has been given to the role of normal stress differences in these systems. The presence or absence of normal stress differences necessarily affects the isotropy of the normal stress field through the solid particulate phase (treated as a continuum), in turn affecting estimation of yield stress. Given the importance of yield stresses in dealing with practical industrial problems, and in understanding fundamental behaviours, it is important to ensure that yield measurements can be relied upon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.