Abstract

We find that globally conserved interface-controlled coarsening of diffusion-limited aggregates exhibits dynamic scale invariance (DSI) and normal scaling. This is demonstrated by a numerical solution of the Ginzburg-Landau equation with a global conservation law. The general sharp-interface limit of this equation is introduced and reduced to volume preserving motion by mean curvature. A simple example of globally conserved interface-controlled coarsening system: the sublimation/deposition dynamics of a solid and its vapor in a small closed vessel, is presented in detail. The results of the numerical simulations show that the scaled form of the correlation function has a power-law tail accommodating the fractal initial condition. The coarsening length exhibits normal dynamic scaling. A decrease of the cluster radius with time, predicted by DSI, is observed. The difference between global and local conservation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.