Abstract

As a result of their coherent interaction, two-dimensional periodic arrays of metallic nanostructures support collective modes commonly known as lattice resonances. Among them, out-of-plane lattice resonances, for which the nanostructures are polarized in the direction perpendicular to the array, are particularly interesting since their unique configuration minimizes radiative losses. Consequently, these modes present extremely high quality factors and field enhancements that make them ideal for a wide range of applications. However, for the same reasons, their excitation is very challenging and has only been achieved at oblique incidence, which adds a layer of complexity to experiments and poses some limitations on their usage. Here, we present an approach to excite out-of-plane lattice resonances in bipartite arrays under normal incidence. Our method is based on exploiting the electric-magnetic coupling between the nanostructures, which has been traditionally neglected in the characterization of arrays made of metallic nanostructures. Using a rigorous coupled dipole model, we demonstrate that this coupling provides a general mechanism to excite out-of-plane lattice resonances under normal incidence conditions. We complete our study with a comprehensive analysis of a potential implementation of our results using an array of nanodisks with the inclusion of a substrate and a coating. This work provides an efficient approach for the excitation of out-of-plane lattice resonances at normal incidence, thus paving the way for the leverage of the extraordinary properties of these optical modes in a wide range of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.