Abstract

We consider the semilinear harmonic oscillator $$i\psi_t=(-\Delta +{|x|}^{2} +M)\psi +\partial_2 g(\psi,\bar \psi), \quad x\in \mathbb{R}^{d},\, t\in \mathbb{R},$$where M is a Hermite multiplier and g a smooth function globally of order 3 at least. We prove that such a Hamiltonian equation admits, in a neighborhood of the origin, a Birkhoff normal form at any order and that, under generic conditions on M related to the non resonance of the linear part, this normal form is integrable when d = 1 and gives rise to simple (in particular bounded) dynamics when d ≥ 2. As a consequence we prove the almost global existence for solutions of the above equation with small Cauchy data. Furthermore we control the high Sobolev norms of these solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.