Abstract

It is shown that sufficiently close inner parallel sets and closures of the complements of outer parallel sets to a d-dimensional Lipschitz manifold in R d with boundary have locally positive reach and the normal cycle of the Lipschitz manifold can be defined as limit of normal cycles of the parallel sets in the flat seminorms for currents, provided that the normal cycles of the parallel set have locally bounded mass. The Gauss–Bonnet formula and principal kinematic formula are proved for these normal cycles. It is shown that locally finite unions of non-osculating sets with positive reach of full dimension, as well as the closures of their complements, admit such a definition of normal cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.