Abstract

Blur is produced in a digital image due to low pass filtering, moving objects or defocus of the camera lens during capture. Image viewers are annoyed by blur artefact and the image's perceived quality suffers as a result. The high-quality input is relevant to communication service providers and imaging product makers because it may help them improve their processes. Human-based blur assessment is time-consuming, expensive and must adhere to subjective evaluation standards. This paper presents a revolutionary no-reference blur assessment algorithm based on re-blurring blurred images using a special mask developed with a Markov basis and Laplace filter. The final blur score of blurred images has been calculated from the local variation in horizontal and vertical pixel intensity of blurred and re-blurred images. The objective scores are generated by applying proposed algorithm on the two image databases i.e., Laboratory for image and video engineering (LIVE) database and Tampere image database (TID 2013). Finally, on the basis of objective and subjective scores performance analysis is done in terms of Pearson linear correlation coefficient (PLCC), Spearman rank-order correlation coefficient (SROCC), Mean absolute error (MAE), Root mean square error (RMSE) and Outliers ratio (OR). The existing no-reference blur assessment algorithms have been used various methods for the evaluation of blur from no-reference image such as Just noticeable blur (JNB), Cumulative Probability Distribution of Blur Detection (CPBD) and Edge Model based Blur Metric (EMBM). The results illustrate that the proposed method was successful in predicting high blur scores with high accuracy as compared to existing no-reference blur assessment algorithms such as JNB, CPBD and EMBM algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.