Abstract

The development of optical communication techniques and optical components is rapidly progressing in the era of high-speed information communication. In this area, many studies have been carried out to investigate highly transparent optical adhesives. UV-curing adhesives, which rely on irradiating ultraviolet rays, are a major candidate for use in this field. However, they suffer from thermal degradation and discoloration due to long-term UV irradiation. Thus, in this study, we present a transparent adhesive by replacing the photo-initiator to improve the yellowish discoloration phenomenon, which affects aging and low surface quality. By replacing 2-benzyl-2-(dimethylamino)-4′-mopholinobutyrophenone, which causes yellow changes due to a red-shift and donation electron groups, with α -hydroxycyclohexylphenyl ketone, this approach was successful to improve the yellowish discoloration problem. By taking advantage of the excellent thermal and mechanical stabilities in addition to resistance to long-term UV irradiation, a transparent heat dissipation film formed by grid-patterned boron nitride nanosheets was manufactured by a transfer printing method. The film can be utilized as a major component in electrical and optical films which require thermal resistivity and optical transparency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.