Abstract
Stream-flow forecasting is a crucial task for hydrological science. Throughout the literature, traditional and artificial intelligence models have been applied to this task. An attempt to explore and develop better expert models is an ongoing endeavor for this hydrological application. In addition, the accuracy of modeling, confidence and practicality of the model are the other significant problems that need to be considered. Accordingly, this study investigates modern non-tuned machine learning data-driven approach, namely extreme learning machine (ELM). This data-driven approach is containing single layer feedforward neural network that selects the input variables randomly and determine the output weights systematically. To demonstrate the reliability and the effectiveness, one-step-ahead stream-flow forecasting based on three time-scale pattern (daily, mean weekly and mean monthly) for Johor river, Malaysia, were implemented. Artificial neural network (ANN) model is used for comparison and evaluation. The results indicated ELM approach superior the ANN model level accuracies and time consuming in addition to precision forecasting in tropical zone. In measureable terms, the dominance of ELM model over ANN model was indicated in accordance with coefficient determination (R2) root-mean-square error (RMSE) and mean absolute error (MAE). The results were obtained for example the daily time scale R2 = 0.94 and 0.90, RMSE = 2.78 and 11.63, and MAE = 0.10 and 0.43, for ELM and ANN models respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.