Abstract

Herein, we report the synthesis of nontoxic pyrite iron sulfide (FeS2) nanocrystals (NCs) using a two-pot method. Moreover, we study the influence of these NCs incorporated into the PTB7:PC71BM active layer of bulk-heterojunction ternary organic photovoltaic (OPV) cells. The OPV devices are fabricated with the direct configuration glass/ITO/PEDOT:PSS/PTB7:PC71BM:FeS2/PFN/FM. The Field’s metal (FM) is a eutectic alloy composed of 32.5% Bi, 51% In and 16.5% Sn by weight that melts at 62 °C. It is deposited on the active layer/PFN under atmospheric conditions. Ternary active layers are prepared by adding small amounts of the semiconducting FeS2 NCs at different weight ratios of 0.0, 0.25, 0.5, and 1.0 wt % with respect to the electron donor PTB7. With respect to the reference device (without FeS2), a 21% increase in the power conversion efficiency (PCE) is observed for OPVs with 0.5 wt % FeS2, such that the PCE of the OPVs is enhanced from 5.69 to 6.47%. According to the Kruskal–Wallis and Mann–Whitney statistical tests, all OPV devices follow the same trend.

Highlights

  • Iron disulfide (FeS2) is a natural earth-abundant and nontoxic material with possible applications in lithium batteries, transistors or photovoltaic (PV) devices [1,2]

  • Nanostructures of FeS2 have been used as counter electrodes in dye-sensitized solar cells (DSSCs) [9,12,13], as electron acceptors or donors in inorganic or hybrid solar cells [10,14,15,16,17] and as second electron acceptors in organic photovoltaic cells (OPVs) [18]

  • An iron pyrite thin film used as a counter electrode showed a conversion efficiency (8%) similar to that of a Pt counter electrode in DSSC [9], which could be due to the high catalytic activity of pyrite

Read more

Summary

Introduction

Iron disulfide (FeS2) is a natural earth-abundant and nontoxic material with possible applications in lithium batteries, transistors or photovoltaic (PV) devices [1,2]. Semispherical pyrite NCs are synthesized and added at different concentrations as second electron acceptors into the PTB7:PC71BM active layer of the OPVs that are fabricated with the direct configuration glass/ITO/PEDOT:PSS/PTB7:PC71BM:FeS2/PFN/FM, where PFN is poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7fluorene)-alt-2,7-(9,9-dioctylfluorene)] (see Figure 1a and the Experimental section).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.