Abstract

X-ray photoemission spectroscopy is used in a great variety of research fields; one observable is the sample's stoichiometry. The stoichiometry can be deduced based on the expectation that the ionization cross sections for innershell orbitals are independent of the molecular composition. Here we used chlorine-substituted ethanes in the gas phase to investigate the apparent carbon stoichiometry. We observe a nonstoichiometric ratio for a wide range of photon energies, the ratio exhibits x-ray-absorption fine structure spectroscopy (EXAFS)-like oscillations and hundreds of eV above the C1s ionization approaches a value far from 1. These effects can be accounted for by considering the scattering of the outgoing photoelectron, which we model by multiple-scattering EXAFS calculations, and by considering the effects of losses due to monopole shakeup and shakeoff and to intramolecular inelastic scattering processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.