Abstract
The process of the formation of a stationary mass transfer mode for a moving reacting particle is examined. An analytic expression valid for a nonstationary distribution of the concentration of matter in a steady stream of viscous fluid, flowing past a spherical particle, was obtained for the case when at a certain instant a chemical reaction of the first order begins at the surface of the sphere. The problem is solved for small finite Reynolds and Péclet numbers. The solution of the corresponding stationary problem has been obtained in [1]. Paper [2] examined a nonstationary heat transfer of a fluid spherical drop in an inviscid flow with spasmodic change of initial temperature at high Péclet numbers. Paper [3] contains an analysis of the problem of a nonstationary heat transfer of a rigid spherical particle for small Reynolds and Péclet numbers at spasmodic change of temperature of the particle surface. The results obtained in [3] can be used to describe the mass transfer for a moving reacting particle only in the case of a diffusion mode of the chemical reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.