Abstract
It is well known that SIRS epidemic with disease-related death can be described by a system of nonlinear ordinary differential equations (NL ODEs). This model has two equilibrium points where their existence and stability properties are determined by the basic reproduction number [1]. Besides the qualitative properties, it is also often needed to solve the system of NL ODEs. Euler method and 4th order Runge-Kutta (RK4) method are often used to solve the system of NL ODEs. However, both methods may produce inconsistent qualitative properties of the NL ODEs such as converging to wrong equilibrium point, etc. In this paper we apply non-standard finite difference (NSFD) scheme (see [2,3]) to approximate the solution of SIRS epidemic model with disease-related death. It is shown that the discrete system obtained by NSFD scheme is dynamically consistent with the continuous model. By our numerical simulations, we find that the solutions of NSFD scheme are always positive, bounded and convergent to the correct equilibrium point for any step size of integration (h), while those of Euler or RK4 method have the same properties only for relatively small h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.