Abstract
Nanofiller/polymer nanocomposites are promising dielectrics for energy harvesting to be applied in wearable and flexible electronics. The structural design of the nanofillers plays a vital role to improve the energy storage performance of the related nanocomposites. Here, we fabricate a flexible device based on nonsolid titanium oxide (TiOx) nanoparticles/poly(vinylidene fluoride) (PVDF) to achieve enhanced energy storage performance at low loading. The room-temperature oxidation method is used to oxidize two-dimensional MXene (Ti3C2Tx) flakes to form partially hollow TiOx nanoparticles. Taking advantage of this structure, the flexible TiOx nanoparticles/PVDF nanocomposite with an ultralow loading content of 1 wt % nanofillers shows high energy storage performance, including a dielectric constant of ≈22 at 1 kHz, a breakdown strength of ≈480 MV m-1, and an energy storage density of 7.43 J cm-3. The finite element simulation further reveals that the optimization of the energy storage performance is ascribed to the lower electric potential among the partially hollow TiOx nanoparticles, which enhances the breakdown strength of the nanocomposites. This work opens a new avenue to structurally design and fabricate low-loading polymer-based nanocomposites for energy storage applications in next-generation flexible electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.