Abstract

Motivated by exploring the near-wall transport phenomena involved in bioconvection fuel cells combined with electrically conducting nanofluids, in the present article, a detailed analytical treatment using homotopy analysis method (HAM) is presented of non-similar bioconvection flow of a nanofluid under the influence of magnetic field (Lorentz force) and gyrotactic microorganisms. The flow is induced by a stretching sheet under the action of an oblique magnetic field. In addition, nonlinear radiation effects are considered which are representative of solar flux in green fuel cells. A second thermodynamic law analysis has also been carried out for the present study to examine entropy generation (irreversibility) minimization. The influence of magnetic parameter, radiation parameter and bioconvection Rayleigh number on skin friction coefficient, Nusselt number, micro-organism flux and entropy generation number (EGN) is visualized graphically with detailed interpretation. Validation of the HAM solutions with published results is also included for the non-magnetic case in the absence of bioconvection and nanofluid effects. The computations show that the flow is decelerated with increasing magnetic body force parameter and bioconvection Rayleigh number whereas it is accelerated with stronger radiation parameter. EGN is boosted with increasing Reynolds number, radiation parameter and Prandtl number whereas it is reduced with increasing inclination of magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.