Abstract

Systematic treatment of the collective rotation of the nonrigid chiral soliton is developed in the SU(3) chiral quark soliton model and applied to the octet and decuplet baryons. The strangeness degrees of freedom are treated by a simplified bound-state approach which omits the locality of the kaon wave function. Then, the flavor rotation is divided into the isospin rotation and the emission and absorption of the kaon. The kaon Hamiltonian is diagonalized by the Hartree approximation. The soliton changes the shape according to the strangeness. The baryons appear as the rotational bands of the combined system of the soliton and the kaon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.