Abstract

There are many attempts to generalize the reciprocity theorem for bianisotropic media. With formal introduction of notion of reaction for bianisotropic media, we can formulate reciprocity conditions for the medium parameters. We can also extend the procedure used for a gyrotropic medium and consider the complementary, or the Lorentz-adjoint, bianisotropic medium, which satisfies the reciprocity theorem. Definition of the notion of reaction in bianisotropic media is, however, not so trivial. We consider some important aspects of the physical admissibility to use the notion of the reaction as a "physical observable" in bianisotropic media. The questions also arise: for what kinds of the known bianisotropic media is the reciprocity theorem physically applicable? Based on what kind of bianisotropic media, can nonreciprocal microwave devices be realized? We show that a novel class of microwave bianisotropic materials-magnetostatically controlled bianisotropic materials (the MCBMs)-are "physically justified" materials. The Onsager-Casimir principle and the notion of reciprocity are applicable in this case. New nonreciprocal microwave devices based on the MCBMs can be realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.