Abstract

Non reciprocal spin waves have a chiral asymmetry so that their energy is different for two opposite wave vectors. They are found in atomically thin ferromagnetic overlayers with in plane magnetization and are linked to the anti-symmetric Dzyaloshinskii-Moriya surface exchange. We use an itinerant fermion theory based on first principles calculations to predict that non-reciprocal magnons can occur in Fe$_3$GeTe$_2$, the first stand alone metallic two dimensional crystal with off-plane magnetization. We find that both the energy and lifetime of magnons are non-reciprocal and we predict that acoustic magnons can have lifetimes up to hundreds of picoseconds, orders of magnitude larger than in other conducting magnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.