Abstract

Nonradiative energy transfer (NRET) has been applied in various applications of Nanosensors, Raman scattering, color tuning, light harvesting and organic light emitting structures. Due to the small range of donor-acceptor separation distance that NRET is effective, the improvement in energy transfer (ET) efficiency for thicker structures seems necessary. The plasmons resonance energy transfer (PRET) has been successfully employed to improve the NRET efficiency. The conventional plasmonic configuration consists of donor-metal nanostructure-acceptor shows remarkable improvement of PRET efficiency from the excited donor dipole to the acceptor molecule in longer separation distance. We report the first successful cascaded plasmons coupling in planar structure of donor/acceptor thin film that significantly gives rise to enhancement of ET efficiency. Moreover, the theoretical analysis shows an enhancement in induced electric field due to stratified metal-dielectric configuration compared to simple metal thin film. We observed ET efficiency increases more than 100% by applying dielectric layer between two metal films in plasmonic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.