Abstract

We analyze the process of string vacuum destabilization due to instanton induced superpotential couplings which depend linearly on charged fields. These nonperturbative instabilities result in potentials for the D-brane moduli and lead to processes of D-brane recombination, motion and partial moduli stabilization at the non-perturbative vacuum. By using techniques of D-brane instanton calculus, we explicitly compute this scalar potential in toroidal orbifold compactifications with magnetized D-branes by summing over the possible discrete instanton configurations. We illustrate explicitly the resulting dynamics in globally consistent models. These instabilities can have phenomenological applications to breaking hidden sector gauge groups, open string moduli stabilization and supersymmetry breaking. Our results suggest that breaking supersymmetry by Polonyi-like models in string theory is more difficult than expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.