Abstract
We present a nonperturbative study of the form factor associated with the projection of the full four-gluon vertex on its classical tensor, for a set of kinematics with one vanishing and three arbitrary external momenta. The treatment is based on the Schwinger-Dyson equation governing this vertex, and a large-volume lattice simulation, involving ten thousand gauge field configurations. The key hypothesis employed in both approaches is the “planar degeneracy”, which classifies diverse configurations by means of a single variable, thus enabling their meaningful “averaging”. The results of both approaches show notable agreement, revealing a considerable suppression of the averaged form factor in the infrared. The deviations from the exact planar degeneracy are discussed in detail, and a supplementary variable is used to achieve a more accurate description. The effective charge defined through this special form factor is computed within both approaches, and the results obtained are in excellent agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.