Abstract
AbstractPresent research work focuses on study of self‐focusing and self‐trapping of Hermite cosh Gaussian (HchG) laser beams in rippled density plasma by considering relativistic non‐linearity. The coupled non‐linear differential equations for the beam width parameters (for modes m = 0, 1, and 2) were derived by employing higher‐order correction in comparison to paraxial ray theory by expanding dielectric function and eikonal up to r4 terms. It is observed that the inclusion of higher‐order terms significantly influence the off‐axial properties for m ≥ 1 mode indices. Furthermore, the effect of parameters including beam intensity, ripple factor, depth of density modulation, and decentred parameter on self‐focusing and self‐trapping is analysed and discussed both analytically and numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.