Abstract

We propose a family of nonparametric estimators for an option price that require only the use of underlying return data, but can also easily incorporate information from observed option prices. Each estimator comes from a risk-neutral measure minimizing generalized entropy according to a different Cressie–Read discrepancy. We apply our method to price S&P 500 options and the cross-section of individual equity options, using distinct amounts of option data in the estimation. Estimators incorporating mild nonlinearities produce optimal pricing accuracy within the Cressie–Read family and outperform several benchmarks such as Black–Scholes and different GARCH option pricing models. Overall, we provide a powerful option pricing technique suitable for scenarios of limited option data availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.