Abstract
Although unbiasedness is a basic property of a good test, many tests on vector parameters or scalar parameters against two-sided alternatives are not finite-sample unbiased. This was already noticed by Sugiura [Ann. Inst. Statist. Math. 17 (1965) 261--263]; he found an alternative against which the Wilcoxon test is not unbiased. The problem is even more serious in multivariate models. When testing the hypothesis against an alternative which fits well with the experiment, it should be verified whether the power of the test under this alternative cannot be smaller than the significance level. Surprisingly, this serious problem is not frequently considered in the literature. The present paper considers the two-sample multivariate testing problem. We construct several rank tests which are finite-sample unbiased against a broad class of location/scale alternatives and are finite-sample distribution-free under the hypothesis and alternatives. Each of them is locally most powerful against a specific alternative of the Lehmann type. Their powers against some alternatives are numerically compared with each other and with other rank and classical tests. The question of affine invariance of two-sample multivariate tests is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.